...a2b2 a2b3 a3b1 a3b2 a3b3 ],证明A^2=lA,并求l
发布网友
发布时间:2024-10-27 21:01
我来回答
共1个回答
热心网友
时间:2024-10-28 10:59
A=
[a1b1 a1b2 a1b2]
[a2b1 a2b2 a2b3]
[a3b1 a3b2 a3b3]
则 A=αβ^T,
其中 α=(a1,a2,a3),β=(b1,b2,b3)
则 A^2=αβ^Tαβ^T=α(β^Tα)β^T=(a1b1+a2b2+a3b3)αβ^T=(a1b1+a2b2+a3b3)A=IA,
其中 I=a1b1+a2b2+a3b3.