三元一次方程化难为易
发布网友
发布时间:2024-05-15 14:28
我来回答
共1个回答
热心网友
时间:2024-05-18 08:11
步骤:①利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;
②解这个二元一次方程组,求得两个未知数的值;
③将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把
这三个数写在一起的就是所求的三元一次方程组的解.
灵活运用加减消元法,代入消元法解简单的三元一次方程组.
例如:解下列三元一次方程组
分析:此方程组可用代入法先消去y,把①代入②,得,
5x+3(2x-7)+2z=2
5x+6x-21+2z=2
解二元一次方程组,得:
把x=2代入①得,y=-3 ∴
例2.
分析:解三元一次方程组同解二元一次方程组类似,消元时,选择系数较简单的未知数较好.上述三元一次方程组中从三个方程的未知数的系数特点来考虑,先消z比较简单.
解:①+②得,5x+y=26④
①+③得,3x+5y=42⑤
④与⑤组成方程组:
解这个方程组,得
把代入便于计算的方程③,得z=8