已知等比数列an的每一项均为正数,其中a1=2,求lim(Sn/S2n)
发布网友
发布时间:2024-05-14 19:38
我来回答
共1个回答
热心网友
时间:2024-06-10 15:23
∵Sn=a1(1-q^n)/(1-q)
S2n=a1(1-q^2n)/(1-q)
∴Sn/S2n=[a1(1-q^n)/(1-q)]/[a1(1-q^2n)/(1-q)]
=(1-q^n)/(1-q^2n)
=1/(1+q^n)
1°当q>1时,若n趋向于无穷,则1+q^n趋向于无穷大,即1/(1+q^n)趋向于0
∴lim(Sn/S2n) n趋向于无穷=0
2°当0<q<1时,若n趋向于无穷,则1+q^n趋向于1,即1/(1+q^n)趋向于1
∴lim(Sn/S2n) n趋向于无穷=1