要几道比较难的奥数题,,, 必须是初中的水平哦。。。
发布网友
发布时间:2024-09-29 11:35
我来回答
共4个回答
热心网友
时间:2024-10-25 10:42
如图,在矩形ABCD中,AB=10cm,BC=20cm.P、Q两点同时从A点出发,分别以1cm/秒和2cm/秒的速度沿A⇒B⇒C⇒D⇒A运动,当Q点回到A点时,P、Q两点即停止运动,设点P、Q运动时间为t秒.
(1)当P、Q分别在AB边和BC边上运动时,设以P、B、Q为顶点的三角形面积为s,请写出s关于t的函数解析式及自变量t的取值范围;
(2)在整个运动过程中,t取何值时,PQ与BD垂直.
:解:(1)当P、Q分别在AB边和BC边上运动时,运动时间t满足5<t<10,BQ=2t-10,BP=10-t,
因而以P、B、Q为顶点的三角形面积为s= 12×(2t-10)(10-t),
即s=-t2+15t-50(5<t<10);
(2)以B为原点建立平面直角坐标系,使BC落在x轴正半轴,BA落在y轴正半轴上.
∵D(20,10)在直线BD上,∴直线BD的解析式为y= 12x.
∵两直线互相垂直时,一次项系数一定互为负倒数,
∴直线PQ的一次项系数是-2,
设直线PQ的解析式为y=-2x+b.
分两种情况:①当点P在AB上,点Q在BC上时,
BP=10-t,BQ=2t-10,
∴P(0,10-t),Q(2t-10,0).
把点P、Q的坐标分别代入y=-2x+b,得10-t=b,0=-2(2t-10)+b,
解得t=6,b=4;
②点P在BC上,点Q在AD上时,
BP=t-10,AQ=60-2t,
∴P(t-10,0),Q(60-2t,10).
把点P、Q的坐标分别代入y=-2x+b,得0=-2(t-10)+b,10=-2(60-2t)+b,
解得t=25,b=30.
综上,可知t=6或t=25.
热心网友
时间:2024-10-25 10:42
记得有一本<千题巧解>,周春荔编的,可以去找来参考。
热心网友
时间:2024-10-25 10:43
呃。。去找找各地中考题绝对有难倒吐血的= =
热心网友
时间:2024-10-25 10:43
超难的 证明题,我怕你做不来
在三角形ABC中,角B的角平分线等于角A的平分线,求证:BC=AC.[追问我们做过证明题的呢
热心网友
时间:2024-10-25 10:42
如图,在矩形ABCD中,AB=10cm,BC=20cm.P、Q两点同时从A点出发,分别以1cm/秒和2cm/秒的速度沿A⇒B⇒C⇒D⇒A运动,当Q点回到A点时,P、Q两点即停止运动,设点P、Q运动时间为t秒.
(1)当P、Q分别在AB边和BC边上运动时,设以P、B、Q为顶点的三角形面积为s,请写出s关于t的函数解析式及自变量t的取值范围;
(2)在整个运动过程中,t取何值时,PQ与BD垂直.
:解:(1)当P、Q分别在AB边和BC边上运动时,运动时间t满足5<t<10,BQ=2t-10,BP=10-t,
因而以P、B、Q为顶点的三角形面积为s= 12×(2t-10)(10-t),
即s=-t2+15t-50(5<t<10);
(2)以B为原点建立平面直角坐标系,使BC落在x轴正半轴,BA落在y轴正半轴上.
∵D(20,10)在直线BD上,∴直线BD的解析式为y= 12x.
∵两直线互相垂直时,一次项系数一定互为负倒数,
∴直线PQ的一次项系数是-2,
设直线PQ的解析式为y=-2x+b.
分两种情况:①当点P在AB上,点Q在BC上时,
BP=10-t,BQ=2t-10,
∴P(0,10-t),Q(2t-10,0).
把点P、Q的坐标分别代入y=-2x+b,得10-t=b,0=-2(2t-10)+b,
解得t=6,b=4;
②点P在BC上,点Q在AD上时,
BP=t-10,AQ=60-2t,
∴P(t-10,0),Q(60-2t,10).
把点P、Q的坐标分别代入y=-2x+b,得0=-2(t-10)+b,10=-2(60-2t)+b,
解得t=25,b=30.
综上,可知t=6或t=25.
热心网友
时间:2024-10-25 10:42
记得有一本<千题巧解>,周春荔编的,可以去找来参考。
热心网友
时间:2024-10-25 10:43
呃。。去找找各地中考题绝对有难倒吐血的= =
热心网友
时间:2024-10-25 10:43
超难的 证明题,我怕你做不来
在三角形ABC中,角B的角平分线等于角A的平分线,求证:BC=AC.[追问我们做过证明题的呢