发布网友 发布时间:2024-05-14 18:05
共1个回答
热心网友 时间:2024-07-27 09:00
lim(x->0)(exp(1)-(1+x)^(1/x))/x
=lim(x->0)(exp(1)-exp(1)exp(ln(1+x)/x-1))/x
=lim(x->0)exp(1)(1-exp(ln(x+1)/x-1))/x
利用等价无穷小
=lim(x->0)exp(1)(-(ln(x+1)/x-1))/x
=lim(x->0)exp(1)(x-ln(x+1))/x^2
利用洛必达法则
=lim(x->0)exp(1)(1-1/(x+1))/(2x)
=lim(x->0)exp(1)/(2(x+1))
=exp(1)/2
遇到极限一般是用等价无穷小和洛必达法则,然后遇到指数一般用对数转化。
扩展资料求极限基本方法有
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;
2、无穷大根式减去无穷大根式时,分子有理化;
3、运用两个特别极限;
4、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。
5、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。